On g-Semisymmetric Rings
نویسندگان
چکیده
منابع مشابه
On $\mathbb{Z}G$-clean rings
Let $R$ be an associative ring with unity. An element $x \in R$ is called $\mathbb{Z}G$-clean if $x=e+r$, where $e$ is an idempotent and $r$ is a $\mathbb{Z}G$-regular element in $R$. A ring $R$ is called $\mathbb{Z}G$-clean if every element of $R$ is $\mathbb{Z}G$-clean. In this paper, we show that in an abelian $\mathbb{Z}G$-regular ring $R$, the $Nil(R)$ is a two-sided ideal of $R$ and $\fra...
متن کاملWEAKLY g(x)-CLEAN RINGS
A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...
متن کاملON STRONGLY g(x)-CLEAN RINGS
Let R be an associative ring with identity, C(R) denote the center of R, and g(x) be a polynomial in the polynomial ring C(R)[x]. R is called strongly g(x)-clean if every element r ∈ R can be written as r = s+u with g(s) = 0, u a unit of R, and su = us. The relation between strongly g(x)-clean rings and strongly clean rings is determined, some general properties of strongly g(x)-clean rings are...
متن کاملSemisymmetric graphs from polytopes
Every finite, self-dual, regular (or chiral) 4-polytope of type {3, q, 3} has a trivalent 3-transitive (or 2-transitive) medial layer graph. Here, by dropping self-duality, we obtain a construction for semisymmetric trivalent graphs (which are edgebut not vertex-transitive). In particular, the Gray graph arises as the medial layer graph of a certain universal locally toroidal regular 4-polytope.
متن کاملOn strongly J-clean rings associated with polynomial identity g(x) = 0
In this paper, we introduce the new notion of strongly J-clean rings associated with polynomial identity g(x) = 0, as a generalization of strongly J-clean rings. We denote strongly J-clean rings associated with polynomial identity g(x) = 0 by strongly g(x)-J-clean rings. Next, we investigate some properties of strongly g(x)-J-clean.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISRN Algebra
سال: 2012
ISSN: 2090-6293
DOI: 10.5402/2012/415207